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Abstract. The quiet times at a fixed point in space are investigated in a system close to or at a non-
equilibrium phase transition. The statistics for such first-return times follow from the universality class
of the dynamics and the ensemble: for a power-law waiting time distribution the exponent depends on
the dimension and the underlying model. We study the two-dimensional Manna sandpile, with both the
continously driven self-organized version and the tuned one. The latter has an absorbing state or depinning
phase transition at a critical value of the control parameter. The connection to a driven interface in a
random medium gives the exponent of the waiting time distribution. In the open ensemble, differences
ensue due to the spatial inhomogeneity and the properties of the driving signal. For both ensembles, the
waiting time distributions are found to exhibit logarithmic corrections to scaling.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 52.25.Fi Transport properties

1 Introduction

Statistical behavior described by power-laws is appealing
to attribute to the existence of “criticality” in the un-
derlying dynamics. In the statistical mechanics sense, this
means the proximity of a phase transition, and one of the
prominent ideas in this respect is “self-organized critical-
ity” (SOC). This is usually taken to mean that – whatever
the exact definition of SOC – no fine-tuning to a critical
point in the classical sense is needed and the system at
hand is driven to such a critical state [1–4].

Within the physics of laboratory and space plasmas,
dynamics of the solar wind and the magnetosphere and
the sun there is much evidence for time-series exhibiting
such critical signatures. One of the quantities that one
may consider in this context is the waiting time of an ex-
perimental or observational parameter. This is defined in
the most strict sense as the quiet or dead time intervals in
which the measured signal is zero, but can also be consid-
ered after e.g. spatial or temporal thresholding. Examples
are given by the local particle flux in the perimeter of a
fusion device, and by satellite measurements of the solar
wind [5–13].

The purpose of this paper is to consider waiting-time
statistics at a single point �x in a system exhibiting crit-
icality. It is an essential point whether one has data for
a “global” quantity or local statistics as considered here.
In particular for classical SOC systems, with uncorrelated
driving, global waiting time statistics are described most
often by a Poisson process [14]. Recently it has been ob-
served that for instance the magnetosphere is driven by
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a correlated signal, the flux of the solar wind, which im-
plies that in order to make definite conclusions one has to
understand both the underlying dynamics of the system,
and the properties of the drive (input) [15].

The local waiting time statistics can follow a power-
law probability distribution in a variety of cases though
the global waiting times are Poissonian. This quantity, a
series of waiting times tw recorded at a specific location �x,
is also perhaps easier to observe experimentally than the
one that would describe a whole system. The source for the
critical behavior for the probability distribution Pw(tw, �x)
is the avalanche dynamics in the systems, bursts of activity
that are localized in space and time.

We consider the waiting times tw which separate two
consequent instances of time t1 and t2 (tw = t2 − t1),
between which the activity at �x ρ(�x, t) = 0. Such wait-
ing times result both from the quiescent periods during
avalanches (internal waiting times tw,i) and from the times
it takes for an avalanche to nucleate at some point in the
system from the external drive, and reach �x (external wait-
ing times tw,e). This is illustrated in Figure 1. For both
tw,e and tw,i, one can consequently define separate distri-
butions, Pw,e and Pw,i.

The internal part, Pw,i, is possible to describe theo-
retically in models that give rise to interesting avalanche
behavior. This is true in particular if such a model is re-
lated to non-equilibrium phase transitions: alternatively
absorbing state transitions with a conserved quantity or
depinning/pinning transitions of interfaces in disordered
media [17–21]. These provide with a framework in terms
of continuum equations and exponents describing the crit-
ical quantities at the critical point with tuning. Ensembles
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Fig. 1. An one-dimensional snapshot of a driven Manna model,
and the definitions of the quantities.

where SOC arises are attained by introducing dissipation
(open boundaries in typical sandpile models) and match-
ing that with a slow drive. In the presence of both tem-
poral and spatial statistical translation invariance waiting
times are inherently related to the (self-affine) critical dy-
namics and can in general be described with the aid of
the two-point temporal correlations, in the case of Marko-
vian dynamics in particular. This also points out that the
waiting times are related to the concept of persistence,
which has been recently studied experimentally and theo-
retically [22]. In the case of “SOC” it is not a priori clear
whether an effective description in terms of two-point cor-
relations is available, due to the breakdown of spatial uni-
formity in the dynamics, and if so how the spatial aspects
should be incorporated.

In the following we explore out of many possible mod-
els the two-dimensional Manna sandpile model [23], and
study the waiting time distributions. Using such a sand-
pile is convenient since one can easily define two ensem-
bles. First, there is the SOC one, which can be considered
with finite drive rate f (grains added per unit time). This
enables us to move from the pure SOC case (avalanches
well separated) to a regime where the avalanches start to
overlap [24,25]. Second, one can prepare the system with a
fixed number of grains n which defines a control parameter
F = n/L2 (this is usually called the fixed energy ensemble,
FES, in the absorbing state transition language) [26]. As
F is varied, there is a phase transition between a phase
where the average activity 〈ρ〉 is zero, and another one
where it is finite. The transition turns out to be a depin-
ning transition if one considers the integrated activity of
the sandpile: this obeys an equation of motion which is
reminiscent of an elastic object in a quenched force land-
scape [4,18,27]. At this critical point the order parameter
– interface velocity (〈ρ〉) – vanishes as the driving force F
is tuned at Fc. The differences between the depinning/FES
and the SOC ensembles are that 1) in the former one has
to tune F to Fc, precisely, and 2) the SOC ensemble lacks
translational invariance in �x.

Our main conclusion is that the waiting-time statistics
reflects as expected the nature of the underlying phase
transition: the dimension and the universality class. How-
ever, there are several twists that relate, here, to correc-
tions to scaling in the 2d Manna model, and to the specific
character of the SOC state compared to the usual phase
transition. The structure of this paper is as follows. Sec-
tion 2 explains the models and the quantities related to the
critical behavior. Section 3 contains a scaling analysis of
the waiting time distribution and numerical comparisons.
Finally Section 4 finishes the paper with a discussion.

2 Criticality in sandpiles and interfaces

In the numerics to follow we consider the Manna sand-
pile model, defined via an integer state variable z(x, t): If
z > zc ≡ 1 a site topples and gives two grains to its nearest
neighbors with the destination of each chosen randomly.
The dynamics is parallel, i.e.. all active sites topple simul-
taneously. The Manna model is an example of a sandpile
model that can be mapped to interface depinning. Con-
sider the time-integrated activity H(�x, t) =

∫ t
ρ(�x, t′)dt′.

This maps into the discrete Quenched Edwards-Wilkinson
equation (QEW) or Linear Interface Model (LIM), in the
form

∂tH = θ(ν∇2H + η(�x, H) + F (�x, t)) (1)

where the step-function θ forces the interface velocity to
be either zero or unity [4,27]. The noise term η arises
from the randomness in the toppling rules, and the F -term
counts the number of grains added to the system. For a
continuously driven system F ∼ ft, which is compensated
by the pinning at boundaries (H = 0) which corresponds
to the loss of grains in the sandpile.

The continuum QEW has a a depinning (DP) tran-
sition at a Fc. This implies that the order parameter,
the interface velocity, vanishes, and correlation functions
show criticality typical of the QEW class with appropriate
noise [19,20]. The self-affine temporal and spatial correla-
tion functions are related to the critical exponent χ for the
roughness, and z, the dynamical exponent. The QEW has
an upper critical dimension of four (in 4+1 dimensions)
with χ4d = 0, and z4d = 2. The values of the exponents
will in general depend on the exact character of the noise
term η in the equation; strong correlations may change
the scaling from the QEW one but the general trends are
still such that the lower the spatial dimension d is, the
larger the value of χ and the smaller the z.

Given the presence of only one length- and timescale,
the depinning critical point has also the usual character-
istic of kinetic roughening, that a roughening exponent
βw ≡ χ/z can be defined. This measures both the tem-
poral two-point correlation function and the growth of
fluctuations from a flat state. From the viewpoint of the
avalanche structure and first-return properties the rough-
ening exponent is important, since it relates to the steady-
state (stationary) properties of the dynamics in the tem-
poral domain. The fractal character of the spatiotemporal
dynamics implies that if and when the first-return time
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distribution Pw(tw) of the activity follows a power-law,
Pw(tw) ∼ t−τw

w , the exponent has to relate to the inte-
grated activity at a single location, which in turn follows
from βw [28,29]. Therefore we have that

τw = 1 + χ/z. (2)

This would for the usual QEW class imply (using for sim-
plicity and the sake of argument the 1-loop functional
renormalization group results, instead of numerical values
or 2-loop ones) that

τw,QEW � 1 + [(4 − d)/3]/[2 − 2(4 − d)/9]. (3)

It is a general fact that the dynamics of the system are
reflected in the value of τw: For d small it will have a
value closer to two, which gives an upper bound. For d
approaching the upper critical dimension, τw gets closer
to unity (with τw = 1 at d = 4).

The above observation gives in other words strict lim-
its to the waiting time distribution of an apparently crit-
ical system, whose dynamics are dictated by an underly-
ing non-equilibrium transition with memory effects and
(anomalously) diffusive dynamics (as z �= 2). For the
SOC ensemble the question now becomes, whether τw,SOC

agrees with the depinning estimate, and how properties
of the drive might influence that. The normal QEW de-
pinning transition is characterized by a cross-over to a
thermal-noise system, with the waiting time distribution
becoming trivial in the strong drive limit (F � Fc). For
the finite-but-small drive SOC case, the system still has
well-defined avalanches whose durations start to overlap
while one may still consider the avalanches to exist sep-
arately. The question is, does the inhomogeneity caused
by the open boundaries change the qualitative avalanche
statistics?

3 Waiting time distributions

3.1 Fixed energy ensemble

First we consider the waiting times at the depinning (or
fixed energy) critical point, Fc(L). For the Manna model
there are some direct results about βw by Vespignani et al.,
and the FES scaling has been considered in great detail
by later authors [26,30].

Figure 2 depicts the waiting time statistics as ob-
tained at the critical point for four different system sizes.
Even though for small tw’s there are clear deviations from
power-law behaviour, it is possible to find a part in the
Pw(tw) distributions for large tw that can reasonably well
be described by a power-law, a fit producing a waiting
time exponent τw = 1.50 ± 0.03. One can try to further
verify this by noticing that the large-tw parts of the distri-
butions from systems of different sizes L can be collapsed
onto a single curve by using the scaling form

Pw(tw, L) = t−τw
w P (

tw/LD
)

= L−DτwP̃ (
tw/LD

)
(4)

with τw = 1.52 ± 0.03 (and D = 1.48 ± 0.02, Fig. 2),
in good agreement with the value based on equation (2)
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Fig. 2. Waiting time distributions in the FES/depinning case.
The solid line corresponds to τw = 1.52. In the first (upper)
data collapse, τw = 1.52 and D = 1.48. For the second collapse,
showing the existence of logarithmic corrections, γ = 0.74 has
been used, τw and D as above. The last panel demonstrates
again that including logarithmic correction improves the fit,
and that the exponent γ is seemingly independent of L. Points
connected with solid line correspond to γ = 0.74, while those
connected with dotted line have γ = 0.
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Fig. 3. An example of off-critical waiting time distributions in
the depinning ensemble, F = 1.1Fc(L).

and the result of reference [26], βw ∼ 0.52. Similar results
can be obtained by analyzing the moments 〈tqw〉 of the
Pw(tw)-distribution [31]. One finds that these obey to a
relatively good approximation scaling of the form 〈tqw〉 ∼
LD(q−τw+1) with the exponents as found above.

Even though equation (4) works rather well for the
largest waiting times, Figure 2 shows that such a sim-
ple ansatz is not appropriate for small tw’s. Therefore,
inspired by a recent observation that the size and dura-
tion distributions of the Manna model exhibit logarithmic
corrections to scaling [32], we try the scaling form

Pw(tw, L) = L−Dτw(log tw)γP̃ (
tw/LD

)
. (5)

As Figure 2 demonstrates, this is clearly a better ansatz,
describing well the whole range of waiting times with γ =
0.74 ± 0.05. Notice that Dickman and Campelo studied
the SOC ensemble; below we return to the differences and
similarities of our numerical results to their conclusions.
A pertinent point is that in our case a single value of γ
applies to all L. This is demonstrated in the last panel of
Figure 2, where we plot g∗ = tτw

w Pw/(log tw)γ versus tw
for different system sizes.

In the off-critical situation (Fig. 3), on the other hand,
large waiting times are cut-off due to the finite order pa-
rameter (activity 〈ρ(�x, t)〉 or velocity 〈v(�x, t)〉 for the his-
tory field) and the distributions become independent of
the system size.

3.2 SOC ensemble

In this ensemble, open boundaries and the properties of
the driving signal induce differences to the behaviour of
the waiting time distribution. To inspect these effects
systematically, we consider the distributions for different
drive rates and locations, and dissect the distributions into
the contributions coming from the internal and the exter-
nal waiting times, as discussed earlier.
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Fig. 4. Waiting time distributions in the finite-drive SOC en-
semble for two different values of the drive rate, f = 1/50
(upper figure) and f = 1/100.

The finite-drive SOC case is illustrated in Figure 4
for a site exactly in the center of the SOC system. This
choice of �x is of special interest: one could expect it to
resemble the depinning case as it is the only point in
the system where there is no net flux of grains towards
the boundaries. For any other �x the boundary-induced ef-
fects will play a stronger role raising the question of SOC-
ensemble-induced corrections to scaling. For the values of
f used here new grains are added during the course of
large avalanches, but since the drive takes place randomly
in space it is usually so that the old avalanches and the
new one do not overlap spatially (consider Fig. 1). The
distributions have cut-offs that depend on both L and f .
Even without a systematic analysis it is clear that choos-
ing a smaller f will imply larger maximum waiting times,
as is evident from the data.

It is instructive to compare the above finite-drive case
to 1) a case where only internal waiting times, collected
during the life-time of a single avalanche, are considered,
and 2) the depinning case. Figure 5 shows distributions
of the internal waiting times for a wide range of system
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Fig. 5. Local internal waiting time distributions for a center
site, SOC ensemble. The solid line corresponds to τw = 1.52.
In the data collapse, values τw,i = 1.52, D = 1.48 and γ = 0.74
have been used. The last panel, where points connected with
solid line have γ = 0.74 and those connected with dotted line
γ = 0, demonstrates again that the exponent γ seems to be
independent of L.
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Fig. 6. A comparison, for L = 512, of the waiting times of the
critical depinning (FE) and those of the center site in the SOC
ensemble, (continuously driven and internal waiting times).

sizes. Interestingly, it seems to be possible to collapse the
data by using the ansatz (5) with the same parameters
as in the depinning case. In analogy with Figure 2, we
also present the distributions using the scaling function
g∗ = t

τw,i

w,i Pw,i/(log tw,i)γ . It is rather clear again that the
same γ fits all the system sizes L. This is in slight con-
trast to reference [32] in which such exponents (for non-
dissipative avalanches in particular) were found to be L-
dependent. To this we have two comments to offer: first
the quantity studied here is not avalanche duration nor
size as in that case, and secondly note that the distribu-
tion is pre-conditioned with the choice that we look at the
center of the system, only.

In Figure 6 we compare the ‘raw data’ for all the three
cases for L = 512: Depinning ensemble, finite-drive SOC
ensemble and internal waiting times in the SOC ensem-
ble. It is noticeable that except for the cut-off behaviour,
the three distributions are identical within the statistical
uncertainty.

The comparison above has been attempted for a �x that
is as far from the boundaries as possible. Since the value
of 〈ρ(�x)〉 is not uniform in the SOC case, it still remains to
be seen how varying the measurement location would af-
fect the statistics. As an extreme example, we consider the
location �x = (1, L/2) at the mid-edge of the system. Fig-
ure 7 gives the obvious conclusion that in the finite-drive
case the relative amount of short (mostly internal) waiting
times is smaller at the boundary than in the center site
– at the edge the avalanches tend to dissipate grains and
thus become extinct faster than elsewhere in the system.
Furthermore, the long (typically external) waiting times
are greater than in the center of the system, simply be-
cause the probability for an avalanche to reach a given
edge site is on the average much smaller than to reach the
center site and thus one has to wait longer before such an
avalanche occurs. This can be further analyzed as follows:
assume T grains are added to the system. If an avalanche
dissipates at most O(1) grains, typically, a simple scal-
ing argument about the dissipation profile gives that one
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Fig. 7. SOC ensemble waiting time for two different locations
(center of the system, at the (mid-)edge) for L = 128, f =
1/100 (upper panel). A data collapse for the waiting times at
the edge of the system, with τw,i = 1.3 and D = 1.6, without
logarithmic corrections (lower panel).

grain reaches the center of the boundary for 3/8 T/L (in
our case) grains added, on the average. With 1/f = 100
this implies, that the decay of the distribution should be
located around t ∼ 3× 104, in qualitative agreement with
the data. However, a closer look at the internal waiting
times at such boundary sites reveals, that the scaling is
not the same: an attempt to use similar scalings (τw ∼ 1.52
with or without logarithmic corrections) fails and a bet-
ter one is obtained with the particular values τw ∼ 1.3,
D ∼ 1.6, without logarithmic corrections.

The next question we address concerns the origin of
the τw exponent for the SOC ensemble. Consider a special
case in which the avalanches are started at the measuring
point �x. These have a (perhaps �x-dependent) life-time dis-
tribution P (t, �x). If one now considers the internal waiting
time distribution Pw,i(tw,i, �x), this is a convolution over
the waiting time distribution with a fixed life-time and
P (t, �x) ∼ t−τt (ignoring the logarithmic corrections),

Pw,i(tw,i, �x) =
∫ tc(L)

tw,i

Pw(tw,i, t)P (t, �x)dt. (6)
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Fig. 8. Distribution of the life-time tl a randomly started
avalanche has left once it has reached the center site for the
first time.

If the former of these two is just given as an assumption by
the depinning critical point one, Pw(tw,i) ∼ t−τw

w,i , cut-off
by t, one obtains that

Pw,i(tw,i, �x) ∼ t−τw+1−τt

w,i . (7)

The case of the spatially randomly started avalanches (due
to the spatially random driving signal), however, is differ-
ent. Instead of the life-time distribution P (t, �x) ∼ t−τt ,
one should now use the distribution Pl(tl, �x) of the life-
time tl that an avalanche still has left once it has reached
the measuring point for the first time. From Figure 8 one
sees that in contrast to the power-law total life-time dis-
tribution, Pl(tl, �x) for the center site decays exponentially.
This is probably related to the fact that the distribution
of first arrival times (or external waiting times) is also an
exponential and given by the cut-off of the total life-time
distribution – a typical avalanche has a more or less equal
distance to travel both to the boundary and to the center
site, the time it takes for it to propagate the former dis-
tance giving the cut-off scale of the P (t)-distribution. In
case the use of Pw(tw) ∼ t−τw

w in equation (6) is justified,
one thus arrives at the conclusion that the exponent of the
internal waiting time distribution for a center site in the
SOC ensemble with spatially homogeneous random drive
is in fact τw of the depinning case,

Pw,i(tw,i, �x) ∼ t−τw

w,i . (8)

This result is consistent with our simulations. We ob-
serve that the Pw,i(tw,i, L)-distributions for the center site
(Fig. 5) can be well described by equation (5), with τw

having the depinning value τw ∼ 1.52.
Equations (7) and (8) suggest that the exponent of

the Pw,i(tw,i, �x)-distribution can be affected by the spatial
properties of the driving signal. Indeed, this effect can be
seen in Figure 9, where we compare the distributions of
waiting times with uniform drive and in the case where
the avalanches are started at the measuring point only.
The latter distribution seems to decay somewhat faster,
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Fig. 9. Comparison of the internal waiting time distributions
with two spatially different driving signals, L = 1024.

as predicted by equation (7) (as τt > 1), but we are unable
to extract the precise value of the exponent from the data.

In addition to the spatial properties, one can also con-
sider the effect of a temporally non-uniform driving signal
to the waiting time distribution. Assume that the external
waiting times tw,e are essentially due to a Poisson process
with a slowly fluctuating drive rate f . Taking this to be
a piecewise constant Poisson process with a large number
of drive rates from some probability distribution Pf (f),
the probability distribution for external waiting times be-
comes

Pw,e(tw,e) =
1
f0

∫ ∞

0

Pf (f)f2e−ftw,edf, (9)

where f0 is the mean drive rate. By substituting into this,
out of many possible distributions, a power-law distribu-
tion for the drive rates, Pf (f) ∼ f−α, with a cut-off at
some fmax, one obtains for long external waiting times

Pw,e(tw,e) ∼ t−(3−α)
w,e . (10)

In other words, in the presence of power-law distributed
drive rates, one could expect to see a distribution for the
local waiting times that has two distinct power-law re-
gions. For tw small, the distribution is dominated by the
internal waiting times and should therefore be more or less
unchanged, with the usual exponent τw. For larger values
of tw, where the external waiting times dominate, we have
now power-law behaviour with an exponent 3−α, in con-
trast to the usual exponential behaviour. This procedure
can also be applied to the usually exponential global wait-
ing time distribution to get a power-law distribution for
long global waiting times, which is essentially what has
been done in reference [15] in the case of an exponential
rate distribution. Figure 10 demonstrates this effect with
α = 0.9. In addition to the power-law distributed long (ex-
ternal) waiting times, one may observe that for tw small,
the distribution is seemingly independent of the temporal
properties of the drive. We can thus conclude that in ad-
dition to the dependence on the measurement location �x,
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Fig. 10. The effect of power-law distributed drive rates (with
α = 0.9) on the waiting time distribution for L = 128. The
solid line corresponds to an exponent 2.1, as predicted by equa-
tion (10).

the waiting time distributions of the SOC ensemble may
also depend in a rather complicated manner on both the
spatial and temporal properties of the external driving
signal.

4 Conclusions

We have studied the details of local waiting times in a
sandpile model, to elucidate the origins of the probability
distribution. For the system at hand, the two-dimensional
Manna model, we are able to relate the internal waiting
time exponent to the critical exponents of the phase tran-
sition of the same model, in the “fixed energy” or de-
pinning ensemble. This works in spite of the fact that to
reach the best collapse of the data we have to resort to
corrections to the scaling function(s). It is maybe not sur-
prising that the SOC case follows the FES/DP scaling so
well since though the distribution does vary with the mea-
surement location the agreement is found for a site at the
center of the system. In any case, this result sheds further
light on the debate as to when these two ensembles are
equivalent, and if the SOC scaling exponents follow from
the depinning phase transition [35]. It is interesting that
the waiting time distributions seem to imply the presence
of logarithmic corrections to the scaling function, as re-
cently suggested by Dickman and Campelo in the case of
the size and duration distributions, and very importantly
this seems also to be the case for the “usual” phase tran-
sition.

A central point is that if the scenario is not compli-
cated by other effects like a complicated driving, the exis-
tence of an underlying “continuum theory” fixes the range
of exponents that can be expected. One particular case
where this could be of interest is provided by so-called
critical curvature models used to describe solar activ-
ity [9]: The continuum equation is different and the zoo of
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possible exponents is yet not fully understood, but the
basic outcome should be the same.

Understanding the local waiting times is based on the
fact that the activity forms an effectively fractal pattern
regardless of the ensemble and the point of observation.
Complications would arise in the SOC case if the pat-
tern of avalanches would have correlations, either spatial
or temporal, due to the driving signal. This picture re-
sembles to a large degree the case of Barkhausen noise, in
systems with a finite field ramp rate, in the way the wait-
ing time distribution changes as one moves away from the
critical point. The study of a case with varying drive rates
reveals that the effective exponent can be tuned. It would
be interesting to consider scenarios like colored noise since
with eg. a spatially correlated drive signal the avalanche
overlap might complicate the outcome.

We finish by pointing out two different nuances. First,
by considering the waiting times in a SOC system (with
a non-zero or with a vanishing drive rate) we have simul-
taneously considered “persistence” or first-return charac-
teristics in a SOC system. Its power-law features seem to
be related as noted earlier to the translation-invariant en-
semble, but understanding in detail the way the waiting
times behave as a function of �x would seem interesting.
We have restricted ourselves to comparing the bulk and
the very edge of a sandpile (or the center point and the
outmost point of an interface in a random medium). The
presence of logarithmic features in the scaling of P (tw)
should also have consequences for the two-point correla-
tion functions in this particular model; this is an open
problem for future.

Second, the relative insensitivity of the waiting time
exponent (limited to between one and two) means that the
ensemble does not matter much, and therefore it seems a
fruitful idea to try to establish observational or experi-
mental limits to such exponents. This might make it pos-
sible to establish the effective nature of the underlying
dynamics – the dynamical equation, the noise, and the
dimensionality. Recent experiments on fusion plasma de-
vices (tokamaks, stellarators, reverse field pinces) [33,34]
have highlighted this matter. Recall that based on the
scaling picture the waiting time exponent is bounded from
above by two. The existence of experimental indications
(for conditions that correspond in practice to a local mea-
surement) for higher values in some cases implies in our
opinion that the driving signal has temporal correlations.

We are grateful to the Center of Excellence program of the
Academy of Finland for support.
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